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Game theory describes strategic interactions where success of
players’ actions depends on those of coplayers. In humans, sub-
stantial progress has been made at the neural level in characteriz-
ing the dopaminergic and frontostriatal mechanisms mediating
such behavior. Here we combined computational modeling of stra-
tegic learning with a pathway approach to characterize association
of strategic behavior with variations in the dopamine pathway.
Specifically, using gene-set analysis, we systematically examined
contribution of different dopamine genes to variation in a multi-
strategy competitive game captured by (i) the degree players antic-
ipate and respond to actions of others (belief learning) and (ii) the
speed with which such adaptations take place (learning rate). We
found that variation in genes that primarily regulate prefrontal do-
pamine clearance—catechol-O-methyl transferase (COMT) and two
isoforms of monoamine oxidase—modulated degree of belief learn-
ing across individuals. In contrast, we did not find significant asso-
ciation for other genes in the dopamine pathway. Furthermore,
variation in genes that primarily regulate striatal dopamine func-
tion—dopamine transporter and D2 receptors—was significantly as-
sociated with the learning rate. We found that this was also the case
with COMT, but not for other dopaminergic genes. Together, these
findings highlight dissociable roles of frontostriatal systems in stra-
tegic learning and support the notion that genetic variation, orga-
nized along specific pathways, forms an important source of variation
in complex phenotypes such as strategic behavior.
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Game theory describes strategic interactions where success of
players’ actions depends on those of coplayers and has been

instrumental in the quantitative analysis of social behavior (1, 2).
In humans, there is substantial evidence from laboratory experi-
ments that, in addition to learning about rewards and punishments
available in the environment, people also anticipate and respond
to competitive or cooperative actions of other participants (1, 3).
Specifically, learning in strategic settings can be parsimoniously
characterized using two learning rules across a wide range of
strategic contexts and experimental conditions: (i) reinforcement-
based learning (RL) through trial and error and (ii) belief-based
learning through anticipating and responding to the actions of
others (1, 4).
Only in the past decade, however, have researchers begun to

characterize the biological substrates underlying decision making
in game theoretic settings (3). At the neural level, applications of
functional neuroimaging, combined with formal mathematical
models of behavior, have elucidated key roles of the frontostriatal
circuits and putative dopaminergic mechanisms in guiding social
behavior (5, 6). In particular, during competitive strategic inter-
actions activity in the prefrontal cortex (PFC) was found to be
better accounted for by models that incorporate higher-order
inferences about opponents’ behavior, rather than simpler forms
of trial-and-error reinforcement learning (5, 7).

In comparison, despite the explosion in availability of genomic
data as well as known heritability of economic behavior, we know
much less about the molecular genetic underpinnings of the in-
termediate neural mechanisms (8, 9). Here we sought to shed
light on the neurogenetic basis of strategic behavior by exploiting
known variation in the set of genes within the dopamine path-
way and studying their effects on behavior. A genetic pathway
consists of a group of functionally related genes that mediate
a particular biological process (e.g., dopamine functioning)
(Fig. 1B) (10). For example, the DAT1 gene encodes the do-
pamine transporter (DAT), whose function is to remove dopa-
mine from the synaptic cleft, thus terminating the signal of the
neurotransmitter. Although these pathways are abstractions of
complex biological processes that have no simple start or end
points, they have been invaluable to researchers because they
capture and organize our knowledge in a parsimonious and
tractable manner (10).
Studying the molecular basis of social and strategic behavior in

the context of economic games and specific biological pathways
offers a number of important advantages. First, the dopamine
pathway seems to play a fundamental role in social behavior in
all known vertebrate species by virtue of its involvement in (so-
cial) reward and decision-making processes (11, 12). Unlike
economic phenotypes such as wealth that are far removed from
the proximate biological mechanisms, models of strategic learning
provide highly parsimonious and mathematically rigorous descriptions
of behavior and have been shown to have substantial predictive
validity at both behavioral and neural levels (3, 9).
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Importantly, focusing on specific biological pathways allows us
to exploit existing knowledge regarding the biological mecha-
nisms underlying behavior, and in particular known relationships
between gene and brain. The dopamine system is known to ex-
hibit remarkable regional variation in expression levels of genes
coding for the set of enzymes, receptors, and transporters in-
volved in dopamine functioning (Fig. 1C) (11, 13). In the PFC,
where DAT1 expression is low, genes regulating enzymatic break-
down, in particular catechol-O-methyl transferase (COMT) and to
a lesser extent isoforms of the monoamine oxidase (MAO) genes,
are important determinants of dopamine flux (14). In contrast,
these genes have much less impact on striatal dopamine levels,
where DAT1 expression is high (15). On the receptor side, re-
gional variation results from distribution of dopamine receptor
types (16). Receptors of the D1 family, D1 and D5, are expressed
throughout the brain. In contrast, receptors in the D2 family
exhibit more regional specificity: D2 receptors are expressed
primarily in the dorsal striatum, D3 receptors in the ventral
striatum, including nucleus accumbens but less so in dorsal
striatum, and D4 receptors in the frontal cortex and limbic
regions (16).
These differences have known important consequences for

cognition and behavior (14, 15) but to our knowledge have not
been explored in strategic or social behavior in humans. Here
we studied the behavior of 218 participants in a multistrategy
competitive game, the so-called patent race, in a stylized but well-
characterized setting of a population with many anonymously

interacting agents and low probability of re-encounter (Fig. 1C
and SI Materials and Methods) (5).
Moreover, using this game, previous neuroimaging results

have been able to disaggregate trial-by-trial variation in neural
responses along frontostriatal circuits to distinct computational
signatures of RL and belief learning processes (5). In particular,
whereas the medial PFC was found to respond selectively to
belief-based inputs and reflected individual differences in degree
of engagement of belief learning, striatal activity was correlated
with both reinforcement and belief-based signals, suggesting
possible convergence of these signals in the striatum (5). Build-
ing upon these findings, therefore, we investigated (i) the degree
to which variation in strategic learning can be captured by vari-
ation in genes in the dopamine pathway and (ii) the extent to
which these variations are organized along dissociable prefrontal
and striatal neural systems.
Consistent with our goal of capturing overall variation in do-

pamine functioning and its effects on strategic learning, we in-
cluded not only exonic polymorphisms that exert direct effects on
protein sequence and functions but also those in intronic and
UTRs, as well as variable-number tandem repeats (VNTRs) and
synonymous exonic polymorphisms (Fig. 1B and SI Materials and
Methods). Although long thought to have no biological effect,
intronic and synonymous mutations are now known to affect
gene translational and transcriptional efficiencies, and conse-
quently protein levels, as opposed to altering protein structure
itself (17). To account for correlated regressors owing to linkage
disequilibrium (LD), we took a dimension reduction approach
and created a set of eigenSNPs using principal components
analysis (PCA) (Fig. 1B and Materials and Methods). Compared
with traditional candidate gene approaches, this multilocus
approach can be used to detect association between a pheno-
type and groups of SNPs (genes) and is more efficient when
there exist weaker but coordinated effects arising from multiple
SNP markers (10).

Results
Model-Based Characterization of Behavior. To characterize in-
dividual variation in choice behavior, we adopted a hybrid model—
experience weighted attraction (EWA)—that combines and nests
both reinforcement and belief learning (1, 4). Specifically, choice
behavior in EWA is governed by two key parameters capturing
distinct computational components involved in updating players’
action values and has been highly successful in explaining observa-
tions across a wide range of games at both behavioral and neural
levels (Materials and Methods, Fig. S1, and Table S1). First, the
belief learning parameter δ captures a player’s sensitivity toward
actions of opponents as opposed to received payoffs. An individual
responding only to received payoffs is captured by δ = 0, corre-
sponding to a pure RL player, whereas a player driven entirely by
belief learning is captured by δ = 1. Using choice behavior and
simulations for a single subject as illustration (Fig. 2A, Upper),
a larger belief learning parameter is most saliently reflected in an
increased probability of investing 2 and 3 in rounds 70–100, corre-
sponding to periods when strong players invested 1–2 units with
increased likelihood. Second, learning rate ρ governs how action
values depreciate over time, capturing the degree to which players
are sensitive to more recent observations relative to past ones. A
player highly sensitive to recent observations, captured by a low ρ,
will therefore adapt faster, for example during rounds 80–100 in Fig.
2A, Lower, whereas a player with a large ρ is similarly sensitive to
recent and past observations and adapts more slowly.
Consistent with previous studies of strategic learning (4, 5), we

found that the hybrid model significantly outperformed both
reinforcement and belief-based learning models alone as mea-
sured using the likelihood ratio test (P < 0.001 for each) as well
as the Akaike information criterion penalizing for number of
parameters (P < 0.001 for each). To capture individual variation
in behavior, we estimated a saturated (fixed effects) model where
each participant was coded with individual belief learning and
learning rate parameters, δSi (mean = 0.36, SD = 0.17) and ρSi
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Fig. 1. (A) Starting with the Kyoto Encyclopedia of Genes and Genomes
dopamine pathway, we selected a set of genes directly related to dopamine
functioning (Table 1). For each gene, we took all available SNPs in the GWA
dataset and conducted PCA to account for correlation due to LD. On the
phenotype side, we used a laboratory-based economic game (patent race).
These were then combined in our computational model, where parameters were
estimated using maximum likelihood. Hypothesis testing was done using two
different methods: (i) permutation P values under the null hypothesis of no
association and (ii) empirical P values by comparing to randomly matched genes
in the GWA dataset. (B) Dopamine pathway genes are represented in a stylized
version of the dopamine synapse and include dopamine genes directly involved
in synthesis (green), uptake (blue), and metabolism (pink) and receptors (violet).
Certain details, such as presynaptic autoreceptors, have been omitted for clarity.
(C) In the patent race, subjects were presented with (i) the game with in-
formation regarding their endowment, the endowment of the opponent, and
the potential prize. (ii) Subjects inputted the decision (self-paced) by pressing
a button mapped to the desired investment amount from the initial endow-
ment. (iii) After a brief delay, the opponent’s choice was revealed. If the subject’s
investment was strictly more than those of the opponent, the subject won the
prize; otherwise, the subject lost the prize. In either case, the subject kept the
portion of the endowment not invested.
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(mean = 0.86, SD = 0.10), respectively (Fig. 2B). This generated
a set of individual-level belief learning parameters that we use in
subsequent genetic analyses. Furthermore, we found that the
individual estimates of the two parameters were largely un-
correlated (Spearman ρ = 0.13), which allowed us to characterize
potential separable genetic contributions to behavior.

Characterization of Genetic Variation in Dopamine Pathway.We next
sought to summarize variation of genes along the dopamine path-
way. Using PCA and a 90% cutoff rule (Materials and Methods),
we found SNPs within gene were highly correlated, consistent with
nearby markers being in strong LD (Table 1). For example, four
eigenSNPs contained 91% of the variation in the COMT gene, for
which our genome-wide association (GWA) data contained 17
SNPs that exceeded a minor allele frequency (MAF) threshold
of 0.1 (Table 1). Critically for our goal of identifying contribution
of individual dopamine genes to behavior, we found using ca-
nonical correlation analysis that variation across genes are

essentially uncorrelated (mean = 1.9 ± 1.4%; Table S2), con-
sistent with distant marker being in weak LD.

Prefrontal Dopamine Genes Selectively Contribute to Variation in
Belief Learning. Having summarized overall variation at both
behavioral and genetic levels, we sought to identify genetic
contributions to individual variation in the degree of belief
learning, captured by the parameter δ. Specifically, for each gene
in the dopamine pathway, we allowed the δ parameter in our
computational model to vary according to the set of associated
eigenSNPs, which can be interpreted as genetic variation that
affects neural sensitivity to specific reward-related inputs
(Materials and Methods). For example, in the case of the MAOB
gene, in addition to the population parameter δ we included
three additional parameters, {δE1,δE2,δE3}, corresponding to the
three eigenSNPs of the MAOB gene (Table 1 and SI Materials
and Methods). Motivated by our previous neuroimaging findings
suggesting PFC involvement in belief learning (5), we first ex-
amined genes known to regulate prefrontal dopamine levels.
Specifically, we included the COMT gene and the two mono-
amine oxidase genes (MAO A and B) that code for isoforms
of enzymes that break down extracellular dopamine. Function-
ally, MAOB is known to preferentially metabolize dopamine,
whereas MAOA is more selective toward serotonin (18). Animal
experiments using COMT knock-out mice suggest that MAO
contributed to ∼20% of dopamine degradation, approximately
half that of COMT (18).
Using permutation tests to assess the null hypothesis of no

association, we found that allowing belief learning to vary ac-
cording to COMT genotype significantly improved model fit
(permutation P < 0.005, Table 1). In addition, and consistent
with animal data on relative efficiency of the different enzymes in
dopamine breakdown, we found that MAOB exerted a significant
(permutation P < 0.05) albeit weaker influence on belief learning
in terms of both significance as well as improvement in log like-
lihood (Table 1 and Materials and Methods). For MAOA, which
has greater affinity to serotonin compared with dopamine (18), we
found an even weaker association (permutation P < 0.1; Table 1).
Interestingly, incorporating the 30-base repeat sequence VNTR,
a highly studied polymorphism in the promoter region that has
been implicated in behavioral traits such as aggression (19), to-
gether with SNP data significantly improved the model (permu-
tation P < 0.05; Table 1). We then characterized genes that
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Fig. 2. (A) Illustration of parameter effects on model predictions using a sin-
gle subject in the weak role. Actual subject choice behavior is presented as
a time series smoothed using a 15-round bin average. Simulated choice
probabilities were calculated using different belief learning and learning
rate parameters. Each panel refers to a separate investment level. Note that
a change in belief learning primarily affects the distribution of investment
choices; in contrast, a change in the learning rate primarily affects the
smoothness of adaption across rounds. (B) Density plot of individual-level
belief learning (δ) and learning rate (ρ) parameters.

Table 1. Summary of dopamine pathway genes and parameter estimates

Belief learning (δ) Learning rate (ρ)

Function Gene SNPs PCs % Var k* LLR punc pperm pemp LLR punc pperm pemp

Synthesis TH 2 2 100 1,089 0.98 0.374 0.898 0.888 0.9 0.400 0.913 0.932
DDC 20 4 90 162 3.45 0.141 0.943 0.963 29.3 0.000 0.257 0.278
VMAT2 16 8 92 22 31.1 0.000 0.420 0.410 12.3 0.002 0.969 1.000

Transport/clearance DAT1 9 5 93 73 9.35 0.002 0.821 0.808 68.6 0.000 0.024 0.027
VNTR 0.22 0.510 0.796 34.5 0.000 0.008
Joint 9.7 0.007 0.877 86.9 0.000 0.014

COMT 17 4 91 191 57.3 0.000 0.005 0.005 49.8 0.000 0.038 0.031
MAOA 22 1 94 4 12.3 0.000 0.082 0.25 0.2 0.495 0.834 1.000
VNTR 3.5 0.136 0.687 17.4 0.000 0.498
Joint 32.1 0.000 0.029 32.7 0.000 0.691

MAOB 28 3 95 70 32.7 0.000 0.035 0.029 1.2 0.000 0.585 0.586
Receptor DRD1 5 3 99 275 9.22 0.000 0.522 0.510 9.76 0.000 0.639 0.647

DRD2 17 5 94 159 24.8 0.000 0.295 0.296 67.5 0.000 0.036 0.025
DRD3 6 3 97 289 2.49 0.174 0.881 0.917 23.9 0.000 0.219 0.201
DRD4 1 1 100 975 3.40 0.009 0.335 0.396 9.46 0.000 0.193 0.183
VNTR 11.9 0.000 0.247 12.5 0.000 0.314
Joint 12.0 0.000 0.398 25.8 0.000 0.207

PCs, principal components; % Var, percent of total variance captured by included PCs; punc, P value using likelihood ratio test; pperm, permutation P value
(see SI Materials and Methods); pemp, empirical P value (see SI Materials and Methods); TH, tyrosine hydroxylase; VMAT2, vesicular monoamine transporter 2.
*Number of matched comparison genes chosen from the GWA dataset.
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primarily modulated striatal genes, as well as other genes in our
dopamine pathway, including receptors and those involved in
dopamine synthesis. In contrast, we did not find any of these
to significantly improve model fit (minimum permutation P <
0.30; Table 1).

Multiplexed Contribution of Dopamine Genes to Variation in Learning
Rate. Next, we characterized genes that explained the other key
parameter of our computational model—the learning rate ρ. As
with the belief learning parameter, we allowed ρ to vary
according the set of eigenSNPs in each dopamine gene. Moti-
vated by our hypothesis that learning rate is primarily regulated
by striatal functioning, we first characterized dopamine genes
that disproportionately affected striatal dopamine functioning, in
particular DAT1, and also dopamine receptor (DR) D2 and
DRD3 (20, 21). We found that the DAT1 gene was significantly
associated with variation in individual learning rates (permuta-
tion P < 0.05; Table 1). The existence of association is further en-
hanced by the fact that the DAT1 VNTR was also significantly
associated with ρ (permutation P < 0.01; Table 1), as well as being
jointly significant (permutation P < 0.02; Table 1).
Next we characterized dopamine receptor genes DRD2 and

DRD3, which primarily affect dorsal and ventral striatal dopa-
mine functioning, respectively. In previous neuroimaging results,
activity in the dorsal striatum, in particular the putamen, but not
the ventral striatum, was correlated with both reinforcement and
belief prediction errors. However, there are reasons to suspect
that the ventral striatum may also be involved, because it is
widely implicated in neuroimaging studies on reward and decision
making (22). We found that DRD2 was significantly associated
with the learning rate (permutation P < 0.05), but not DRD3
(permutation P > 0.2; Table 1).
We then characterized genes that primarily affect prefrontal

dopamine functioning. However, there are studies that suggest
COMT exerts an indirect effect on striatal dopamine (23, 24). In
contrast, we are not aware of human or animal studies demonstrating
such indirect effects for MAO. Intriguingly, we found that
COMT variation was significantly associated with the learning
rate (P < 0.05), but not for either MAOA or MAOB (P > 0.5
for each; Table 1). Finally, we characterized dopamine synthesis
genes as well as receptor genes that do not exhibit regional
specificity and did not find that these genes are significantly
associated with behavior (minimum P = 0.19; Table 1).

Distribution of Association Across the Genome. In the above results
we have focused on permutation tests to guard against spurious
associations compared with a random genotype. It is possible,
however, that our evidence of association does not rise above the
background association compared with the genome at large. To
investigate this possibility, we compared the fit of models using
dopamine genes relative to matching non-dopamine genes in the
GWA dataset to generate an “empirical” null distribution (SI
Materials and Methods). Strikingly, despite varying sizes of the
comparison gene sets (Table S3), we found that the empirical
null distributions, and consequently P values, tracked the per-
mutation null closely in all dopamine genes tested (Table 1).
In addition, to formally compare effect size of prefrontal and

striatal dopamine genes on choice behavior, we contrasted, using
a bootstrap procedure, the mean eigenSNPs coefficient for
COMT and MAOB against those for DAT1 and DRD2 (SI
Materials and Methods). We found a strong dissociation between
the two gene sets in the belief learning parameter δ, such that
prefrontal genes exerted a significantly greater effect than striatal
dopamine genes (bootstrap P = .004). In contrast, likely owing to
the significant contribution of COMT to learning rate, we only
found a weak dissociation in favor of striatal genes for the ρ pa-
rameter (bootstrap P = .097).

Mapping Genetic Variation to Behavioral Variation. Here we per-
formed two types of model checks to illustrate how estimated
genetic effects captured variation at the level of model parameters

and choice behavior. First, to illustrate estimated genetic contri-
bution to variation in the belief learning parameter δ, we imputed,
for each individual, a gene-weighted parameter estimates δGi by
multiplying δEj estimates with individual eigenSNP scores (SI
Materials and Methods). Using these imputed parameters, we found
that the variation in δGi consistently reflected individual differences
summarized by δSi from the saturated model using fixed effects (Fig.
3B). For example, for the COMT gene, we found that the lowest
quartile of δGi estimates corresponded to a mean δSi value of 0.26,
compared with 0.45 for the highest quartile. Using the same pro-
cedure for the learning rate parameter ρ, we found a similar re-
lationship with the gene-weighted parameter estimates ρGi . For the
DAT1 gene, for example, the lowest quartile of ρGi estimates cor-
responded to a mean ρSi value of 0.81, compared with 0.89 for the
highest quartile (Fig. 4B).
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Fig. 3. (A) Permutation tests showed significant association of COMT and
MAOB with individual variation in belief learning (P < 0.005 and P < 0.05,
respectively), whereas MAOA was marginally significant (P < 0.1). No other
genes were found to be significantly associated. Lengths of bars indicate
likelihood improvement per principal component. Colors represent permu-
tation P values. (B) To capture how genetic variation affects the degree of
belief learning, we split, for each gene, the gene-weighted δGi values into
quartiles (terciles in the case of MAOA owing to limited genetic variation)
and calculated the mean individual-level δFi values (error bars are SEM). The
former was calculated using the calibrated eigenSNP model, whereas the
latter was estimated using fixed effects in a saturated model. (C) Effects of
gene variation on switching rate were calculated as the probability that
participants switched investment amounts between trials t and t+1, sepa-
rated by the imputed gene-weighted learning parameter δGi .Consistent with
model predictions, individuals with higher δGi values switched at a higher
rate than those with lower values. (D) Individual SNP associations for belief
learning parameter δ are shown on DNA strand. Thick green bands indicate
exonic regions, purple bands UTRs, and otherwise intronic regions. Bar
lengths indicate log-likelihood ratio (LLR) improvement, where red indicates
significance at P < 0.05 and blue indicates nonsignificance. Scale is given at
bottom right.
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Next, we sought to quantify and visualize estimated genetic
effects at the choice behavior level. First, as shown in previous
theoretical and behavioral studies (4, 5), a key feature dis-
tinguishing belief and reinforcement learning is an increased rate
of switching strategies across rounds by belief learners, owing to
sensitivity of belief learners to the action of opponents (5).
Consistent with this model prediction, we found that individuals
with higher δGi values indeed exhibited higher switching rates
compared with those with lower values (Fig. 3C). Second, we
sought to capture the influence of learning rate on choice be-
havior. Under EWA, individuals with lower ρGi values should be
influenced by more recent outcomes compared with those with
higher values (4, 5). We therefore calculated a correlogram to
measure how investment levels were influenced by payoff in-
formation at different lags (Fig. 4C). Consistent with model pre-
dictions, we found that for high ρGi individuals past experiences
continue to exert an effect well into 20 rounds in to the future,
whereas for low ρGi individuals this effect drops sharply after 10
rounds (Fig. 4C).

Distribution of Association Across SNPs. Next we sought to un-
derstand how identified behavioral effects are distributed across
SNPs. Of SNPs in dopamine genes with a significant association
with behavioral parameters, only one is associated with changes
in protein sequence: rs4680 (Val158Met) in COMT, a poly-
morphism that causes changes in the catalytic activity of COMT
and has been widely studied in the literature (Figs. 2D and 3D)
(25). Seven other SNPs produce synonymous mutations that do

not cause a change in the protein sequence. The vast majority of
SNPs are located in intron sequences (60/79) or in the 3′ or 5′
UTRs of the target genes (11/79) (Figs. 3D and 4D). Further-
more, we computed the fit improvement for each SNP in the
implicated genes (Figs. 3D and 4D and SI Materials and Methods).
Consistent with the idea of multiple SNPs each exerting a weak
influence on behavior, we observed that most SNPs exerted
a small effect on our two learning parameters (Figs. 3D and 4D).
We also explored the complementary notion that interactions
between SNPs account for variation, finding qualitatively similar
results (Table S4 and SI Results).

Discussion
There is now increasingly detailed knowledge of two physical
substrates responsible for behavior: the brain and the genome
(9). Here, we build upon these insights to shed light on the
complex process by which genomic variation influences behavior
through its impact on neural circuitry. Importantly, and similar
to previous discussions in the computational neuroimaging lit-
erature, results from our computational approach should not
be interpreted as an exercise to “localize Greek letters” in the
genome (26). Just as it would be erroneous for neuroimaging
researchers to interpret a particular brain region as a “prediction
error module” or “a region encoding δ,” in the same way it would
be mistaken to interpret our results as suggesting that dopamine
genes function as “belief learning genes” or “genes encoding δ.”
Rather, our goal is to test hypotheses regarding how variations in
dopamine genes serve to constrain and regulate the computa-
tional properties of neural circuits subserved by dopamine.
More specifically, our results add to growing evidence that

dopamine mechanisms critically underlie a wide class of value-
based decision making across both social and nonsocial settings
(11). They are consistent with a mechanism whereby neural
computations related to the anticipation and response of actions
of others are governed by dopamine genes involved in signal
termination in PFC—primarily COMT and MAOA/B. Because
prefrontal dopamine clearance mechanisms are slower than
striatal, the PFC is thought to be sensitive to tonic, but not
phasic, dopamine (27). This has led to the hypothesis that tonic
prefrontal dopamine levels are important in maintaining active
representations of relevant information and mediate learning
after negative consequences (28). In our case, these functions
might be relevant for maintaining a model of the partner’s be-
havior and learning through belief-based prediction errors (5).
Furthermore, and in common with basic RL mechanisms, our

results suggest that variation in proteins that affect dopamine
signaling and clearance mechanisms in the striatum influence
valuation of past experience in action selection. A possible
mechanism proposed in the literature suggests that these variants
modulate dopamine concentrations in meso-temporal scale (tens
of milliseconds) by regulating phasic dopaminergic signaling in
the striatum. In contrast, the effects of COMT on the learning
rate is likely indirect and primarily operates through its effects on
the balance of dopamine levels in frontostriatal circuits (23). In
humans, these hypotheses can be tested indirectly by pharma-
cological manipulations on protein function (29).
At the molecular level, the explanatory power of polymor-

phisms not affecting protein structure raises the intriguing
possibility that biochemical differences are caused by poly-
morphisms that do not directly affect protein sequence and func-
tion. For example, synonymous mutations in COMT have
been shown to affect catalytic efficiency through regulation of
translational efficiency (30). More generally, synonymous mutations
are known to affect mRNA stability, transcriptional machinery
binding affinity, and splicing, which can have significant conse-
quences, as evidenced by the fact that they are often under se-
lective pressure. UTR and intronic mutations, however, are likely
to fall in upstream/downstream regulatory sequences where they
could affect translation efficiency and protein levels (31).
Methodologically, we provide a tractable approach to connect

gene and behavior by leveraging our knowledge of the intermediate
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Fig. 4. (A) Permutation tests showed significant association of DAT1, DRD2,
and COMT with individual variation in learning rate (all P < 0.05). Color
coding and interpretation are identical to Fig. 3A. (B) To capture how ge-
netic variation affects the learning rate, we split gene-weighted ρGi values
into quartiles and calculated the mean individual-level ρFi values (error bars
are SEM). (C) Effect of genetic variation on choice behavior is illustrated
using correlogram of investment level at time twith payoff deviation at time
t± lag. The x axis represents different lags in number of rounds. Blue dashed
lines indicate theoretical 95% confidence interval. Note the higher correla-
tion values between periods 15–30 in high-ρ relative to low-ρ individuals. (D)
Individual SNP associations for learning rate parameter ρ are shown on DNA
strand. Color coding and interpretation are identical to Fig. 3D.
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neural mechanisms. Unlike unconstrained hypothesis-free tests on
individual polymorphisms, focusing on biological pathways allows
us to relate systems of functionally related genes to putative
mechanistic models of behavior. That is, we explicitly acknowledge
the inherent tension regarding our current state of knowledge (8,
10). On the one hand, we now have an immense and growing base
of knowledge regarding the biological basis of economic behavior,
which can explain observation across multiple biological levels and,
in some cases, across multiple species (3, 8). On the other hand, our
knowledge is highly incomplete. Pathway analysis based on GWA
data thus can complement these studies by testing multiple dopa-
minergic pathway genes for association with decision-making tasks
rather than solely relying on an individual SNP approach (8, 10).
Taken together, these findings highlight the dissociable roles

of dopamine genes in strategic learning and support the notion
that variations in molecular mechanisms, organized along spe-
cific genetic pathways and brain circuits, form an important
source of variation in complex phenotypes such as strategic be-
havior. More generally, these data suggest the intriguing pos-
sibility that, although complex phenotypes such as economic
behavior are highly polygenic, the information is sparsely dis-
tributed across the genetic code and concentrated within specific
functionally defined biological pathways.

Materials and Methods
Participants. A total of 218 (103 female) undergraduates were recruited from
the Behavioral × Biological Economics and Social Sciences (B2ESS) Laboratory
at the National University of Singapore. A total of 217 (103 female) were
included in the final analysis after one subject was excluded owing to
genotype unavailability (SI Materials and Methods).

Procedure. Participants completed 240 rounds of the patent race game in
sessions of 18–24 participants, alternating between strong and weak roles
over 120 rounds, counterbalanced. Informed consent was obtained as ap-
proved by the Internal Review Board at the National University of Singapore
(SI Materials and Methods).

Genotype Selection and Preprocessing. For each dopamine gene (Fig. 1B), SNPs
were included according to hg18 coordinates, and with MAF exceeding 0.1.
DRD5 was excluded from the final analysis owing to lack of SNP variation in
our sample. For details, including coding of VNTRs and X-chromosome
genes, see SI Materials and Methods.

Computational Modeling. Denote ski as strategy k (investment level) for player
i, si (t) the chosen strategy by player i at period t, and s−i(t) the chosen
strategy of the opponent at period t For each round, player i receives pos-
sible payoff πiðski ,s−iðtÞÞ for playing strategy ski in period t, and the subjective
value Vk

i ðtÞ for playing strategy k is governed by two parameters and
updates according to the following:

Vk
i ðtÞ=

8
>>>><

>>>>:

Nðt − 1Þ · ρ ·Vk
i ðt − 1Þ+ πi

!
ski ,s−iðtÞ

"

NðtÞ , if ski = siðtÞ

Nðt − 1Þ · ρ ·Vk
i ðt − 1Þ+ δ · πi

!
ski ,s−iðtÞ

"

NðtÞ
, if ski ≠ siðtÞ

, [1]

where N(t) = ρi · N(t−1)+1 captures how Vk
i ðtÞ depreciates over time (for

details, see SI Materials and Methods).
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SI Materials and Methods
Participants. A total of 218 (103 female) undergraduates were
recruited from the Behavioral × Biological Economics and Social
Sciences (B2ESS) Laboratory at the National University of
Singapore. All participants were of ethnic Han Chinese back-
ground and had undergone full genome sequencing. A total of
217 (103 female) participants were included in the final analysis
after one subject was excluded owing to genotype unavailability.

Procedure. Behavioral data were collected from subjects playing
the patent race game in 1-h sessions of 18–24 subjects. In the
patent race game, programmed in zTree (1), two players take the
role of firms competing to develop a new product. The product is
worth a fixed prize and firms are given an endowment to invest.
In the asymmetric version of the game we used, the prize is worth
$10 and the two players begin each round with endowments of $5
and $4 and are referred to as the “strong” and “weak” players,
respectively.
Players can invest any integer amount from their endowment.

The investments are subtracted from the potential earnings. To
win the prize, one must invest strictly more than the opponent.
For example, if the strong player invests $4 and the weak player
invests $2, the payoff that round to the strong player is $5 − $4 +
$10 = $11, whereas the payoff to the weak player is $4 − $2 = $2.
Players’ endowments do not carry over from round to round, so
the maximum investment available is always either four (for the
weak type) or five (for the strong type).
At the beginning of each round, each player was randomly

matched with a player of the other type. They played 120 rounds
in each role, counterbalanced, for 240 rounds in total. They were
fully informed of the rules and matching procedures. Compen-
sation was equal to 10 Singapore dollars (SGD) plus either the
average earnings per round or 7 SGD, whichever was higher.
To illustrate how players can anticipate and respond to the

actions of others in this game, suppose the weak player observes
the strong players frequently investing 5 units. He may sub-
sequently respond by playing 0 to keep his initial endowment.
Upon observing this, strong players can exploit the weak player’s
behavior by investing only 1 unit to obtain both the prize while
keeping 4 units from the endowment. This may in turn entice the
weak player to move away from investing 0 to win the prize. In
contrast, pure reinforcement-learning (RL) players will respond
to these changes in opponents’ behavior in a much slower
manner, because they behave by comparing received payoffs
from past investments without consideration for the strategic
behavior of others (2).

Genotyping. DNA was extracted from blood samples using
QIAamp DNA Blood Midi Kit (Quiagen). SNP genotyping was
performed at the Genome Institute of Singapore with Human-
OmniExpress-12 v1.0 DNA Analysis Kit (Illumina Inc.). Over
730,000 genetic markers, primarily SNPs, across over 18,000
genes were collected from each subject.
All variable-number tandem repeats (VNTRs) were analyzed

with PCR products loaded onto 1.5% (wt/vol) agarose gel with
ethidium bromide, run for 1 h at 5 V/cm in Tris/borate/EDTA,
and visualized in a UV camera.
The DRD4 exon III VNTR was analyzed with HotStar Plus

DNA polymerase (0.3 U per reaction), 1× Q-solution, 1× Cor-
alLoad buffer (Qiagen), 200 μM of each dNTP, 200 nM of each
primer, and 10–20 ng of genomic DNA per reaction, in a volume
of 10 μL. Primer sequences were as follows: forward 5′- GCGAC-

TACGTGGTCTACTCG -3′, reverse 5′- AGGACCCTCATGGCC-
TTG -3′ (3). Thermal protocol included an activation step at –95 °C
for 5 min, 40 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 40 s,
and final hold at 72 °C for 5 min.
The monoamine oxidase A (MAOA) VNTR was analyzed with

PCR ReddyMix Master Mix (Thermo Fisher Scientific), 200 nM
of each primer, and 10–20 ng of genomic DNA per reaction, in
a volume of 10 μL. Primer sequences were as follows: forward 5′-
ACAGCCTGACCGTGGA-3′, reverse 5′- GAACGGACGCTCCA-
TT-3′ (modified from ref. 4). The thermal protocol included an
activation step at –95 °C for 5 min, 35 cycles of 95 °C for 30 s, 58 °C
for 30 s, 72 °C for 60 s, and final hold at 72 °C for 5 min.
The dopamine transporter (DAT) VNTR was analyzed with

PCR ReddyMix Master Mix (Thermo Fisher Scientific), 100 nM
of each primer, 0.2% DMSO, and 10–20 ng of genomic DNA per
reaction, in a volume of 10 μL. Primer sequences were as follows:
forward 5′- TGTGGTGTAGGGAACGGCCTG-3′, reverse 5′- CTT-
CCTGGAGGTCACGGCTCA-3′ (modified from ref. 5). The ther-
mal protocol included an activation step at –95 °C for 5 min, 35 cycles
of 95 °C for 30 s, 61 °C for 30 s, 72 °C for 30 s, and final hold at 72 °C
for 10 min.

Gene Selection and Preprocessing. From the dopamine pathway
defined in the Kyoto Encyclopedia of Genes and Genomes da-
tabase, a manually curated collection of pathway maps widely
used in gene-set analysis, we included dopamine genes that are
involved in (i) dopamine synthesis [tyrosine hydroxylase (TH),
dopa decarboxylase (DDC), and vesicular monoamine transporter
(VMAT)], (ii) coding of dopamine receptors (DRD1–5; DRD5
was excluded from the final analysis owing to limited variation of
SNPs in the sample), and (iii) dopamine transport and clearance
[DAT1, catechol-O-methyl transferase (COMT), and MAOA/B].
For each gene, SNPs were included according to hg18 coordinates
and had minor allele frequency (MAF) exceeding 0.1.
SNP extraction and filtering was conducted using PLINK (6)

and snpStats (7). For each gene, SNPs were included if they were
contained according to hg18 coordinates and had MAF ex-
ceeding 0.1. To reduce dimensionality of the genetic information,
we represented each gene as a linear combination of orthogonal
vectors using principle component analysis (PCA). Specifically,
each analyzed gene is represented by a set of eigenvectors
(eigenSNPs) (8) from principal components accounting for at
least 90% of the total variation of that gene’s SNPs. Occasional
genotyping failures (less than 3% of all included SNPs had more than
2 out of 217 failures) were coded with the mean value of the SNP.

X-Chromosome Genes. Because MAOA/B genes reside on the
X-chromosome, there is substantial uncertainty regarding the
interpretation of allele scores across sex. We addressed this issue
in two ways. First, we estimated the model separating sex. Second,
we added a sex interaction term to account for multiplicative
effects. Both yielded results similar to our original model.

SI Computational Modeling
Base Experience-Weighted Attraction Model (No Genes). Choice be-
havior was modeled using the hybrid model experience-weighted
attraction (EWA) that has been widely used to characterize strategic
learning (9). Denote ski as strategy k for player i. Because
strategies in the patent race are investments from either a $5
or $4 endowment, k∈ f0; . . . ; 5g when player i is strong and
k∈ f0; . . . ; 4g when player i is weak. For period t∈ f1; . . . ; 120g,
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siðtÞ is the amount invested by player i at period t, and s−iðtÞ is the
chosen investment of the opponent at period t.
Player i’s (possibly counterfactual) payoff at period t for some

ski , given the opponent’s actual strategy s−iðtÞ, is equal to the
endowment less ski , plus the $10 prize if ski > s−iðtÞ. This potential
payoff is denoted as πiðski ; s−iðtÞÞ. Notice that, given s−iðtÞ, this
potential payoff differs from player i’s realized payoff in period t
except for when ski = siðtÞ.
Player i’s expected reward, Vk

i ðtÞ, for playing strategy ski in
period t is governed by two parameters and updates according to
the following:

Vk
i ðtÞ=

8
>>>><

>>>>:

Nðt− 1Þ · ρ ·Vk
i ðt− 1Þ+ πi

!
ski ; s−iðtÞ

"

NðtÞ ; if ski = siðtÞ

Nðt− 1Þ · ρ ·Vk
i ðt− 1Þ+ δ · πi

!
ski ; s−iðtÞ

"

NðtÞ ; if ski ≠ siðtÞ
;

[S1]

where function NðtÞ= ρ ·Nðt− 1Þ+ 1 captures the depreciation of
Vk
i ðtÞ. If the player believes his opponent is a fast adaptor, he will

have a small ρ that depreciates past values faster. In contrast, δ
captures the weight between foregone payoffs and actual payoffs
when updating values. This corresponds to one of the key in-
sights of the hybrid model that belief learning is equivalent to
a model whereby actions are reinforced by foregone payoffs in
addition to received payoffs as in RL models. Thus, δ can be
interpreted as a psychological inclination toward belief learning
(9). That is, the hybrid model reduces to the RL model when
δ= 0 and the belief learning model when δ= 1.
To more concretely illustrate the effect of belief learning on

behavior, we contrast an EWA strong player with δ1 > 0 with an
RL strong player with δ2 = 0. Suppose our strong player i invests
$5 and the opponent invests $1. Both for EWA and RL the
value V 5

i will update to take into account the realized payoff
πið5; 1Þ= 10. Unlike the RL player, however, the EWA player
with δ1 > 0 will also update values associated with other actions,
even if they were not chosen. For example, in this case the EWA
player takes into account the hypothetical payoff π1ð2; 1Þ= 13
($10 prize + $3 saved from the endowment) based on the op-
ponent’s action. Note that as δ1 increases the greater the sensi-
tivity to the actions of the opponent, ultimately leading to
a higher probability that $2 will be invested in the next round
relative to $5.

Gene-WeightedModel.To account for gene variation, we allowed δ
or ρ to vary according to the set of eigenSNPs or VNTR dummy
variables. For example, in the case for the DAT1 gene, there
were three eigenSNPs, and thus we replace the δ parameter in
Eq. S1 with the individualized term

δGi = δ0 + δE1 ·Ei1 + δE2 ·Ei2 + δE3 ·Ei3;

where fEi1;Ei2;Ei3g refers to i’s three eigenSNP scores and the
associated parameters fδE1; δE2; δE3g refer to the coefficients on
the eigenSNPs. The same procedure is followed for the ρ param-
eter. Note that this approach implicitly assumes a linear allele–
dose–expression–response relationship. We relax this assump-
tion in later analyses by allowing for SNP–SNP interaction.

Behavioral Data Analysis. To calibrate the models given subjects’
behavior in the game, we estimated parameters of each model,
including initial condition Nð0Þ, using subjects’ responses by
maximizing the logistic log likelihood of the model predictions.
To convert values into choices, we used a logit or softmax
function to calculate the probability of player i playing strategy k

in the next round, pki ðt+ 1Þ= eλ·Vk
i ðtÞ=

PL
l=1e

λ·Vl
i ðtÞ, where λ is an

estimated parameter capturing subjects’ sensitivity to difference
in expected reward associated with the different actions.
Using choice probabilities calculated from the softmax func-

tion, we performed maximum likelihood estimation with a grid
search over a large range of values for all free parameters in all
estimations, because the likelihood function is not globally
concave. We aggregated observations conditional on the roles of
the subjects and then fit the choice data by maximizing the log
likelihood of the observed choices over rounds t for subject i. That
is,

P
i
P

tlogðp
siðtÞ
i ðtÞÞ. Maximum-likelihood estimation of param-

eters was performed using the quasi-Newton algorithm implemented
in the fminunc function in MATLAB. Approximately 100 random
or evenly spaced interior starting values were tried, all of which
produced essentially identical estimates.

Individual SNP Analysis.We compare our gene-set methodology to
other candidate gene approaches by analyzing a selection of
individual SNPs for each of the significant genes. These SNPs
were identified by cross-referencing the genetic markers available
to uswith the tagging SNPs suggested by the International HapMap
Project’s Generic Genome Browser (10). Appropriate tagging SNPs
were determined based on pairwise correlations (11). For reference
data, we used Han Chinese in Beijing in Data Rel 27 Phase II+III,
Feb 09, on NCBI B36 assembly, dbSNP b126. R2 and MAF cutoffs
were 0.8 and 0.1, respectively.

SNP–SNP Interactions. To account for SNP–SNP interactions, we
extended the eigenSNP approach by performing PCA on the set
of regressors produced from a third-order interaction of the
underlying SNP data. For example, if a gene contained 4 SNPs,
we performed PCA on the set of 84 regressors, resulting from 4
original SNPs, an additional 16 second-order interaction terms,
and a further additional 64 third-order interaction terms. Using
the same procedure as outlined above, we took the set of ei-
genSNPs that explained at least 90% of the variance and in-
cluded them in our computational model.

Permutation P Values.Under the permutation test null hypothesis,
individuals are interchangeable, so label-swapping provides a new
dataset sampled under the null hypothesis. In each permutation,
therefore, the within-gene correlations are preserved and only the
behavior–genotype relation is destroyed (6). For each gene, data
were permutated 1,000 times by shuffling the gene–subject
pairing. The reported P value is equal to the proportion of tests
where model fit of the permuted dataset improved upon those of
the original, unpermuted dataset.

Empirical P Values. Empirical P values were determined by com-
paring model fit of the gene within the dopamine pathway to
comparison genes across the entire genome but outside of the
dopamine pathway. A gene was considered comparable if (i) it
was represented by the same or similar number of SNPs and (ii)
these SNPs generated the same number of principal components
according to the procedure outlined above. A range of SNPs was
allowed in cases where an exact match produced too few genes
(Table S1). This typically occurred when there were a large
number of SNPs in the gene.

Formal Dissociation Test. To formally compare effect size of pre-
frontal and striatal dopamine genes on choice behavior, we
contrasted, using a bootstrap procedure, the mean eigenSNP
coefficients for COMT and MAOB against those for DAT1
and DRD2 (12). Specifically, for each of 1,000 iterations of
the bootstrap we created a pseudosample by sampling with
replacement behavioral and genetic data from 218 participants,
and performed maximum likelihood estimates as described
above. The resulting coefficients were standardized to ensure
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comparability across eigenSNPs, and the reported P value is
equal to the proportion of tests where the mean coefficient for
one gene set was greater than that of the other gene set.

SI Results
Predictive Accuracy of EWA Model. To assess the ability of our model
to capture choice behavior in the patent race, we compared actual
proportion of investment against predicted investment proportion
(Fig. S1A). This is equivalent to a scatterplot of the empirical and
EWA prediction proportions as reported in Table S2. Each point
represents an investment strategy, that is, strong investment of 5,
separately for strong and weak roles. The predicted investment
proportion was computed by averaging the round-by-round pre-
dictions of the baseline EWAmodel, aggregating all players over all
120 rounds. The dashed diagonal line represents perfect agreement
between the model predictions and actual play. As evident from
how closely each point lies to this line, model prediction and actual
play are in good agreement, with a χ2 test result of P< 10−8 and
a mean difference of less than 5%.
In addition, we sought to incorporate visualization of game

dynamics by separating predictions into 30-round blocks, with
blocks in the same sequence connected in a series (Fig. S1B). All
points lie near the diagonal line, confirming the success of the
hybrid model of capturing actual play at the finer temporal
resolution. The successful modeling of the relative dynamics is

also apparent in the generally diagonal pattern within each se-
quence of points. Although aggregating over rounds and subjects
understates the full range of behavior, these plots make clear
that the hybrid learning model performs well overall, including
the capturing of movements where static approaches are not able
to capture.
Note that we do not report a statistic such as R2 because of the

discrete nature of our dependent variable. This issue, as well as
model checking techniques such as the one we report above, has
been discussed in depth in both neuroimaging and neurophysi-
ological studies of decision making (13).

Incorporating SNP–SNP Interactions. Owing to the low explanatory
power of single SNPs, a frequent proposal is that there exists
substantial variation that can be explained by accounting for
SNP–SNP interactions (14). Accordingly, we investigated this
question using our gene-set approach by conducting PCA on
regressors formed using third-order interactions of SNPs within
a gene (SI Materials and Methods). Using the same 90% cutoff
rule, we found that incorporating SNP–SNP interactions im-
proved model fit of genes that were previously significant, in
particular COMT and DRD2 (Table S4). Interestingly, we did
not find qualitative changes in overall level of significance of
dopamine genes after accounting for SNP–SNP interactions.
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Fig. S1. (A) Predicted and actual investment proportions for strong and weak players, averaged over all subjects for all rounds. Each point represents an
investment amount (weak, 0–4; strong: 0–5). (B) Identical to A except separated into 30-round blocks. Blocks are connected by series line.
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Table S1. Empirical and predicted choice distributions, calculated as proportion of all players’ choices over
all rounds

Role Investment Nash equilibrium, % Empirical distribution, % Conditional win percentage, % EWA prediction, %

Strong 0 0 0.4 0 0.9
1 20 20.2 55 19.1
2 0 5.1 57 5.2
3 20 12.3 69 10.2
4 0 14.3 77 11
5 60 47.8 100 53.6

Weak 0 60 51.9 0 40.0
1 0 2.0 0 9.4
2 20 12.2 22 17.3
3 0 9.7 27 13.1
4 20 24.2 38 20.3

Table S2. Share of the variance of the gene that can be explained by another gene as calculated using the
canonical correlation redundancy index (12)

Gene COMT,% DAT,% DDC,% DRD1,% DRD2,% DRD3,% DRD4,% MAOA,% MAOB,% TH,% VMAT2,%

COMT — 2.6 2.9 0.8 3.1 0.9 0.8 0.2 1.3 0.5 2.8
DAT1 2.1 — 2.3 1.2 2.0 1.9 0.9 0.4 1.6 1.0 3.6
DDC 2.9 2.8 — 1.3 2.5 1.6 0.8 0.8 1.4 1.5 3.2
DRD1 1.0 2.0 1.7 — 2.4 0.6 0.7 0.4 0.9 0.7 2.9
DRD2 2.5 2.0 2.0 1.5 — 1.4 1.1 0.7 1.9 3.0 4.3
DRD3 1.3 3.2 2.1 0.6 2.4 — 1.0 0.1 1.8 0.3 2.4
DRD4 3.2 4.6 3.2 2.0 5.4 3.0 — 0.1 2.1 1.0 1.6
MAOA 0.9 1.9 3.0 1.3 3.7 0.4 0.1 — 10.3 0.7 2.7
MAOB 1.7 2.7 1.8 0.9 3.2 1.8 0.7 3.4 — 1.5 1.5
TH 0.9 2.5 3.0 1.1 7.4 0.4 0.5 0.4 2.3 — 3.0
VMAT2 1.8 3.0 2.1 1.5 3.6 1.2 0.3 0.4 3.4 1.0 —

In the lower diagonal of the matrix, the row variable constitutes the dependent variable, and reversed for the upper diagonal. Note
the only gene that explained 10% or more of the variance of another gene was the MAOB gene, which explained 10.3% of MAOA
(which resides next to the MAOB gene on the X-chromosome) variation.

Table S3. Selection criteria for comparison genes outside of the
dopamine pathway

Gene SNPs ±

DRD1 5 0
DRD2 17 2
DRD3 6 0
DRD4 1 0
COMT 17 2
DAT1 9 1
MAOA 22 4
MAOB 28 6
TH 2 0
DDC 20 2
VMAT2 16 2
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Table S4. Gene properties and estimates in SNP–SNP interactions

Belief learning (δ) Discounting (ρ)

Function Gene PCs % Var LLR punc pperm LLR punc pperm

Synthesis TH 2 0.98 0.95 0.387 0.900 1.03 0.357 0.903
DDC 8 0.91 21.75 0.000 0.737 28.86 0.000 0.73
VMAT2 12 0.91 57.59 0.000 0.25 35.34 0.000 0.881

Transport/clearance DAT1 5 0.91 12.98 0.000 0.646 70.17 0.000 0.019
COMT 8 0.91 78.32 0.000 0.009 80.29 0.000 0.061
MAOA 1 0.97 10.60 0.000 0.100 0.08 0.689 0.905
MAOB 3 0.95 25.56 0.000 0.081 9.87 0.000 0.602

Receptor DRD1 3 0.99 3.84 0.053 0.819 7.98 0.001 0.72
DRD2 8 0.91 24.38 0.000 0.63 80.34 0.000 0.07
DRD3 3 0.97 3.49 0.073 0.841 12.76 0.000 0.50
DRD4 1 1.00 3.40 0.009 0.358 9.46 0.000 0.19

Owing to the low explanatory power of single SNPs, a frequent proposal is that there exists substantial
variation that can be explained by accounting for SNP–SNP interactions. We investigated this question using
our gene-set approach by conducting PCA on regressors formed using first-, second-, and third-order interactions
of SNPs within a gene. Using a 90% cutoff rule as before, we found that incorporating SNP–SNP interactions
improved model fit of a number of genes that were previously significant, particularly COMT and DRD2 (Table S3).
However, we did not find that previously insignificant genes became significant after accounting for SNP–SNP
interactions. PCA, principal component. % Var, percent of total variance captured by included PCs; LLR, log-
likelihood ratio (compared to no-gene baseline); punc, P value using likelihood ratio test; pperm, permutation P
value (see SI Materials and Methods); pemp, empirical P value (see SI Materials and Methods).
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